Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells

Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells

Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells

Abstract

External resistance affects the performance of microbial fuel cells (MFCs) by controlling the flow of electrons from the anode to the cathode. The purpose of this study was to determine the effect of external resistance on bacterial diversity and metabolism in MFCs. Four external resistances (20, 249, 480, and 1000 Ω) were tested by operating parallel MFCs independently at constant circuit loads for 10 weeks. A maximum power density of 66 mW m(-2) was achieved by the 20 Ω MFCs, while the MFCs with 249, 480, and 1000 Ω external resistances produced 57.5, 27, and 47 mW m(-2), respectively. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes showed clear differences between the planktonic and anode-attached populations at various external resistances. Concentrations of short chain fatty acids were higher in MFCs with larger circuit loads, suggesting that fermentative metabolism dominated over anaerobic respiration using the anode as the final electron acceptor.

read online

Post Comment