Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater: Focusing on Impact of Anodic Biofilm on Sensor Applicability

Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater: Focusing on Impact of Anodic Biofilm on Sensor Applicability

Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater: Focusing on Impact of Anodic Biofilm on Sensor Applicability

Abstract

A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2) ), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2) ) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng.

read online

Post Comment